您现在的位置:主页 > 高考复习 > 数学复习 > 高考数学复习方法 > 文章正文

高考数学复习:数学思想在计数与概率中应用

时间:2009-11-02 12:44 来源:互联网 作者:转载 点击:

  北师大天津附中 潘长虹  计数与概率问题在近几年的高考中都加大了考查的力度,每年都以解答题的形式出现。在复习过程中,由于知识

  北师大天津附中 潘长虹

  计数与概率问题在近几年的高考中都加大了考查的力度,每年都以解答题的形式出现。在复习过程中,由于知识抽象性强,学习中要注重基础知识和基本方法,不可过深,过难。复习时可从最基本的公式,定理,题型入手,恰当选取典型例题,构建思维模式,造成思维依托和思维的合理定势。

  另外,要加强数学思想方法的训练,这部分所涉及的数学思想主要有:分类讨论思想、等价转化思想、整体思想、数形结合思想,在概率和概率与统计中又体现了概率思想、统计思想、数学建模的思想等。在复习中应有意识用数学思想方法指导解题,不可就题论题,将问题孤立,片面强调单一知识和题型。

  能力方面主要考查:运算能力、逻辑思维能力、抽象思维能力、分析问题和解决实际问题的能力。在高考中本部分以考查实际问题为主,解决它不能机械地套用模式,而要认真分析,抽象出其中的数量关系,转化为数学问题,再利用有关的数学知识加以解决。

  例1. 一次掷两颗骰子,求点数和恰为8这一事件A的概率。

  分析:这实际上是一个等可能事件的概率。掷两个骰子出现的基本结果如下表:

  解:表中基本结果36个,而点数为8的有5个,故:P(A)=-

  评述:本题可归结为掷骰子问题,通过对掷骰子情况的研究得出各种概率数学模型,体现了数学建模的思想:

  (1)、投掷一颗均匀的骰子,研究出现各种点的情况,这是等可能事件的概率,各点出现的概率为1/6。

  (2)、同时投掷两颗均匀的骰子,研究出现各种点的情况,可列一表格或用坐标系表示。

  (3)、同时投掷n颗均匀的骰子,研究出现各种点的情况,可看作n次独立事件的概率。

  例2.同时掷四枚均匀硬币,求:

  (1)恰有两枚正面朝上的概率;

  (2)至少有两枚正面朝上的概率。

  分析:因同时抛掷四枚硬币,可认为四次独立重复试验。

  解: (1)问中可看作“4次重复试验中,恰有2次发生”的概率:

  ∴P4(2)=C42(-)2·(1--)2=-=-

  (2)问中,可考虑对立事件“至多有一枚正面朝上”

  故P=1-P4(0)-P4(1)=1-C40(-)0(1--)4-C41(-)1(1--)3=-

  评述:研究各种掷硬币的情况,抽象出其数学本质,再利用概率知识解决,这就是数学建模的过程。这一问题可推广到n枚均匀硬币同时投掷的情况。

(责任编辑:www.360gaokao.com)

特别说明:由于各方面情况的不断调整与变化,360高考网所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。如有出入,欢迎大家予以指正!

    挑错 】【推荐】【打印

    网友意见留言板
    关于我们| About 360gaokao | 服务条款 | 广告服务 | 招聘 | 客服中心 | 网站导航
    Copyright © 1998 - 2009 360gaokao. All Rights Reserved
    360高考网 版权所有